The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene
نویسندگان
چکیده
The effects of graphene stacking are investigated by comparing the results of methane adsorption energy, electronic performance, and the doping feasibility of five dopants (i.e., B, N, Al, Si, and P) via first-principles theory. Both zigzag and armchair graphenes are considered. It is found that the zigzag graphene with Bernal stacking has the largest adsorption energy on methane, while the armchair graphene with Order stacking is opposite. In addition, both the Order and Bernal stacked graphenes possess a positive linear relationship between adsorption energy and layer number. Furthermore, they always have larger adsorption energy in zigzag graphene. For electronic properties, the results show that the stacking effects on band gap are significant, but it does not cause big changes to band structure and density of states. In the comparison of distance, the average interlamellar spacing of the Order stacked graphene is the largest. Moreover, the adsorption effect is the result of the interactions between graphene and methane combined with the change of graphene's structure. Lastly, the armchair graphene with Order stacking possesses the lowest formation energy in these five dopants. It could be the best choice for doping to improve the methane adsorption.
منابع مشابه
Adsorption of Gas Molecules on Graphene Doped with Mono and Dual Boron as Highly Sensitive Sensors and Catalysts
First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and ...
متن کاملStudy on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug
In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...
متن کاملInvestigating the Effect of Doping Graphene with Silicon in the Adsorption of Alanine by Density Functional Theory
In this investigation, the influence of doping graphene with silicon in the adsorption of alanine amino acid was inspected computationally. For this purpose, the structures of pure graphene, silicon doped graphene, alanine and 10 derived products of the alanine reaction with pure and silicon doped nano-adsorbents were optimized geometrically. Afterwards, the values of adsorption energy, formati...
متن کاملSIMULATION OF TETRACYCLINE ONTO GRAPHENE NANO SHEET
Tetracycline (TC) is a broad spectrum of antibiotic which is used to cure infectious diseases and cancer. It can cause harmful side effects due to its high absorption in all organs. On the other hand graphene is appropriate to carry drug and release it to special target, organ or cell. It may decrease the side effects of the drug dramatically by using low dosage of medicine. Graphene oxide (GO)...
متن کاملGraphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases
In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...
متن کامل